An Elementary Study of a Class of Dynamic Systems with Two Time Delays

Akio Matsumoto
Chuo University

Ferenc Szidarovszky
University of Arizona

July 13, 2011

Abstract

An elementary analysis is developed to determine the stability region of a certain class of ordinary differential equations with two delays. Our analysis is based on determining stability switches first where an eigenvalue is pure complex, and then checking the conditions for stability loss or stability gain. In the case of both stability losses and stability gains Hopf bifurcation occurs giving the possibility of the birth of limit cycles.

1 Introduction

Dynamic models with time delays have many applications in many fields of quantitative sciences (see for example, Cushing (1977) and Invernizzi and Medio (1991)). The case of a single delay is well established in the literature (Hayes (1950) and Burger (1956)), however the presence of multiple delays makes analysis much more complicated. Sufficient and necessary conditions were derived for several classes of models giving a complete description of the stability region (Hale (1979), Hale and Huang (1993) and Piotrowska (2007)).

In this paper a special class of dynamic systems is considered which are governed by delay differential equations with two delays. It is well known (Hayes (1950) and Cooke and Grossman (1982)) that stability can be lost or gained on a curve of stability switches, where an eigenvalue is pure complex. We will therefore determine these curves and then by bifurcation analysis characterize those segments where stability is gained or lost. In this way the stability region can be completely described.

This paper is the continuous of our previous work (Matsumoto and Szidarovszky (2011)) where an elementary analysis was presented with a single delay.

The paper is organized in the following way. Section 2 determines the curves where stability switches are possible and characterizes those segments where stability is lost or gained in the nonsymmetric cases. Section 3 discusses the symmetric case and Section 4 concludes the paper.
2 Stability Switches and Stability Region.

We will examine the asymptotical stability of the delay differential equation
\[\dot{x}(t) + Ax(t - \tau_1) + Bx(t - \tau_2) = 0 \]
(1)
where \(A \) and \(B \) are positive constants. The characteristic equation can be obtained by looking for the solution in the exponential form \(\alpha e^{\lambda t} \). By substitution,
\[\alpha \lambda e^{\lambda t} + A\alpha e^{\lambda(t - \tau_1)} + B\alpha e^{\lambda(t - \tau_2)} = 0 \]
or
\[\lambda + Ae^{-\lambda \tau_1} + Be^{-\lambda \tau_2} = 0. \]
(2)

Introduce the new variables
\[\omega = \frac{A}{A + B}, \quad 1 - \omega = \frac{B}{A + B}, \quad \bar{\lambda} = \frac{\lambda}{A + B} \]
\[\gamma_1 = \tau_1(A + B) \text{ and } \gamma_2 = \tau_2(A + B) \]
to reduce equation (2) to the following:
\[\bar{\lambda} + \omega e^{-\bar{\lambda} \gamma_1} + (1 - \omega)e^{-\bar{\lambda} \gamma_2} = 0. \]
(3)

In order to find the stability region in the \((\gamma_1, \gamma_2)\) plane we will first characterize the cases when the eigenvalue is pure complex, that is, when \(\bar{\lambda} = iv \). We can assume that \(v > 0 \), since if \(\bar{\lambda} \) is an eigenvalue, its complex conjugate is also an eigenvalue. Substituting \(\bar{\lambda} = iv \) into equation (3) we have
\[iv + \omega e^{-iv \gamma_1} + (1 - \omega)e^{-iv \gamma_2} = 0. \]

In the special case of \(\gamma_1 = 0 \), the equation becomes
\[iv + \omega + (1 - \omega)e^{-iv \gamma_2} = 0. \]
The real and imaginary parts imply that
\[\omega + (1 - \omega)\cos(v \gamma_2) = 0 \]
\[v - (1 - \omega)\sin(v \gamma_2) = 0. \]
Because of symmetry we can assume first \(\omega > 1/2 \), so from the first equation
\[\cos(v \gamma_2) = -\frac{\omega}{1 - \omega} < -1 \]
so no stability switch is possible. If \(\gamma_2 = 0 \), then equation (3) further simplifies as
\[\bar{\lambda} + 1 = 0 \]
with a single negative eigenvalue. Hence for $\gamma_1 = 0$ the system is asymptotically stable with all $\gamma_2 \geq 0$. If $\omega = 1/2$, the we have $\cos(v\gamma_2) = -1$ so

$$v\gamma_2 = \pi + 2n\pi.$$

Then $\sin(v\gamma_2) = 0$ implying that $v = 0$. So no pure complex eigenvalue exists. With $\gamma_1 = 0$ the system is asymptotically stable with all $\gamma_2 > 0$ as in the nonsymmetric case.

Assume now that $\gamma_1 > 0$, $\gamma_2 > 0$. The real and imaginary parts give two equations:

$$\omega \cos(v\gamma_1) + (1 - \omega) \cos(v\gamma_2) = 0$$

(4)

and

$$v - \omega \sin(v\gamma_1) - (1 - \omega) \sin(v\gamma_2) = 0.$$

(5)

Because of symmetry we might assume again that $\omega \geq 1/2$. We consider the case of $\omega > 1/2$ first. Introduce the variables

$$x = \sin(v\gamma_1) \text{ and } y = \sin(v\gamma_2),$$

then (4) implies that

$$\omega^2 (1 - x^2) = (1 - \omega)^2 (1 - y^2)$$

or

$$-\omega^2 x^2 + (1 - \omega)^2 y^2 = 1 - 2\omega.$$

(6)

From (5),

$$v - \omega x - (1 - \omega) y = 0$$

implying that

$$y = \frac{v - \omega x}{1 - \omega}$$

(7)

Combining (6) and (7) yields

$$-\omega^2 x^2 + (1 - \omega)^2 \left(\frac{v - \omega x}{1 - \omega} \right)^2 = 1 - 2\omega$$

from which we can conclude that

$$x = \frac{v^2 + 2\omega - 1}{2v\omega}$$

(8)

and then from (7),

$$y = \frac{v^2 - 2\omega + 1}{2v(1 - \omega)}.$$

(9)

Equations (8) and (9) provide a parameterized curve in the (γ_1, γ_2) plane:

$$\sin(v\gamma_1) = \frac{v^2 + 2\omega - 1}{2v\omega} \text{ and } \sin(v\gamma_2) = \frac{v^2 - 2\omega + 1}{2v(1 - \omega)}.$$

(10)
In order to guarantee feasibility we have to satisfy

\[-1 \leq \frac{v^2 + 2\omega - 1}{2v\omega} \leq 1 \quad (11)\]

and

\[-1 \leq \frac{v^2 - 2\omega + 1}{2v(1 - \omega)} \leq 1. \quad (12)\]

Simple calculation shows that with \(\omega > 1/2\) these relations hold if and only if

\[2\omega - 1 \leq v \leq 1.\]

From (10) we have four cases for \(\gamma_1\) and \(\gamma_2\), since

\[\gamma_1 = \frac{1}{v} \left\{ \sin^{-1}\left(\frac{v^2 + 2\omega - 1}{2v\omega}\right) + 2k\pi \right\} \]

or

\[\gamma_1 = \frac{1}{v} \left\{ \pi - \sin^{-1}\left(\frac{v^2 + 2\omega - 1}{2v\omega}\right) + 2k\pi \right\} \quad (k = 0, 1, 2, \ldots)\]

and similarly

\[\gamma_2 = \frac{1}{v} \left\{ \sin^{-1}\left(\frac{v^2 - 2\omega + 1}{2v(1 - \omega)}\right) + 2n\pi \right\} \]

or

\[\gamma_2 = \frac{1}{v} \left\{ \pi - \sin^{-1}\left(\frac{v^2 - 2\omega + 1}{2v(1 - \omega)}\right) + 2n\pi \right\} \quad (n = 0, 1, 2, \ldots).\]

However from (4) we can see that \(\cos(v\gamma_1)\) and \(\cos(v\gamma_2)\) must have different signs, so we have only two possibilities:

\[
L_1(k, n) : \begin{cases}
\gamma_1 = \frac{1}{v} \left\{ \sin^{-1}\left(\frac{v^2 + 2\omega - 1}{2v\omega}\right) + 2k\pi \right\} \\
\gamma_2 = \frac{1}{v} \left\{ \pi - \sin^{-1}\left(\frac{v^2 - 2\omega + 1}{2v(1 - \omega)}\right) + 2n\pi \right\}
\end{cases} \quad (13)
\]

and

\[
L_2(k, n) : \begin{cases}
\gamma_1 = \frac{1}{v} \left\{ \pi - \sin^{-1}\left(\frac{v^2 + 2\omega - 1}{2v\omega}\right) + 2k\pi \right\} \\
\gamma_2 = \frac{1}{v} \left\{ \sin^{-1}\left(\frac{v^2 - 2\omega + 1}{2v(1 - \omega)}\right) + 2n\pi \right\}
\end{cases} \quad (14)
\]

For each \(v \in [2\omega - 1, 1]\) these equations determine the values of \(\gamma_1\) and \(\gamma_2\). At the initial point \(v = 2\omega - 1\), we have

\[\frac{v^2 + 2\omega - 1}{2v\omega} = 1\] and \[\frac{v^2 - 2\omega + 1}{2v(1 - \omega)} = -1\]
and if \(v = 1 \), then
\[
\frac{v^2 + 2\omega - 1}{2v\omega} = 1 \quad \text{and} \quad \frac{v^2 - 2\omega + 1}{2v(1 - \omega)} = 1.
\]
Therefore the starting point and end point of \(L_1(k, n) \) are given as
\[
\gamma_1^s = \frac{1}{2\omega - 1} \left(\frac{\pi}{2} + 2k\pi \right), \quad \gamma_2^s = \frac{1}{2\omega - 1} \left(\frac{3\pi}{2} + 2n\pi \right)
\]
and
\[
\gamma_1^e = \frac{\pi}{2} + 2k\pi \quad \text{and} \quad \gamma_2^e = \frac{\pi}{2} + 2n\pi.
\]
Similarly, the starting and end points of \(L_2(k, n) \) are as follows:
\[
\gamma_1^S = \frac{1}{2\omega - 1} \left(\frac{\pi}{2} + 2k\pi \right), \quad \gamma_2^S = \frac{1}{2\omega - 1} \left(-\frac{\pi}{2} + 2n\pi \right)
\]
and
\[
\gamma_1^E = \frac{\pi}{2} + 2k\pi \quad \text{and} \quad \gamma_2^E = \frac{\pi}{2} + 2n\pi.
\]
Figure 1 illustrate the loci \(L_1(k, n) \) and \(L_2(k, n) \) of the corresponding points \((\gamma_1, \gamma_2)\), when \(v \) increases from \(2\omega - 1 \) to unity. The parameter value \(\omega = 0.8 \) is selected. The red curves show \(L_1(0, n) \) and the blue curves show \(L_2(0, n) \) with \(n = 0, 1, 2, \ldots \). Notice that \(\gamma_2^S \) is infeasible at \(n = 0 \) and only the segment of \(L_2(0, 0) \) between \(v = \sqrt{2\omega - 1} \) and \(v = 1 \) is feasible. With fixed value of \(k \), \(L_1(k, n) \) and \(L_2(k, n) \) have the same end point, however the starting point of \(L_1(k, n) \) is the same as that of \(L_2(k, n + 1) \). Therefore the segments \(L_1(k, n) \) and \(L_2(k, n) \) with fixed \(k \) form a continuous curve with \(n = 0, 1, 2, \ldots \).

Figure 1. Partition curve in the \((\gamma_1, \gamma_2)\) plane with fixing \(k = 0 \).
Consider first the segment $L_1(k, n)$. Since $(v^2 - 2\omega + 1)/(2v(1 - \omega))$ is strictly increasing in v, γ_2 is strictly decreasing in v. By differentiation and substitution of equation (4), we have

$$\frac{\partial \gamma_1}{\partial v} \bigg|_{L_1} = -\frac{1}{v^2} \left(\sin^{-1} \left(\frac{v^2 + 2\omega - 1}{2v\omega} \right) + 2k\pi \right) + \frac{1}{v\sqrt{1 - \left(\frac{v^2 + 2\omega - 1}{2v\omega} \right)^2}} \left(\frac{2v(2v\omega) - (v^2 + 2\omega - 1)2\omega}{2v^2\omega^2} \right)$$

$$= -\frac{1}{v^2} \gamma_1 + \frac{1}{v \cos(v\gamma_1)} \frac{v^2 - 2\omega + 1}{2v^2\omega}$$

$$= -\frac{1}{v^2} \gamma_1 + \frac{1}{v} \left(\gamma_1 + \tan(v\gamma_2) \right).$$

(15)

Consider next segment $L_2(k, n)$, similarly to (15) we can shown that

$$\frac{\partial \gamma_1}{\partial v} \bigg|_{L_2} = -\frac{1}{v^2} (\gamma_1 + \tan(v\gamma_2))$$

which is the same as in $L_1(k, n)$, since from (14), $\cos(v\gamma_1) < 0$. Similarly

$$\frac{\partial \gamma_2}{\partial v} \bigg|_{L_2} = -\frac{1}{v^2} (\gamma_2 + \tan(v\gamma_1))$$

(16)

where we used again equation (4).

In order to visualize the curves $L_1(k, n)$ and $L_2(k, n)$, we change the coordinates (γ_1, γ_2) to $(v\gamma_1, v\gamma_2)$ to get the transformed segments:

$$\ell_1(k, n) : \begin{cases} v\gamma_1 = \sin^{-1} \left(\frac{v^2 + 2\omega - 1}{2v\omega} \right) + 2k\pi \\ v\gamma_2 = \pi - \sin^{-1} \left(\frac{v^2 - 2\omega + 1}{2v(1 - \omega)} \right) + 2n\pi \end{cases}$$

(17)

and

$$\ell_2(k, n) : \begin{cases} v\gamma_1 = \pi - \sin^{-1} \left(\frac{v^2 + 2\omega - 1}{2v\omega} \right) + 2k\pi \\ v\gamma_2 = \sin^{-1} \left(\frac{v^2 - 2\omega + 1}{2v(1 - \omega)} \right) + 2n\pi \end{cases}$$

(18)

They also form a continuous curve which is periodic in both directions $v\gamma_1$ and $v\gamma_2$. Figure 2 shows it with $k = 0$ where the curves $\ell_1(0, n)$ are shown in red.
color while the curves $\ell_2(0, n)$ with blue color.

![Partition curve in the $(v\gamma_1, v\gamma_2)$ plane with fixing $k = 0$](image)

We will next examine the directions of the stability switches on the different segments of the curves $L_1(k, n)$ and $L_2(k, n)$. We fix the value of γ_2 and select γ_1 as the bifurcation parameter, so the eigenvalues are functions of $\gamma_1: \lambda = \lambda(\gamma_1)$. By differentiating the characteristic equation (3) implicitly with respect to γ_1 we have

$$
\frac{d\lambda}{d\gamma_1} + \omega e^{-\lambda_1} (-\frac{d\lambda}{d\gamma_2} \gamma_1 - \hat{\lambda}) + (1 - \omega) e^{-\lambda_2} \left(-\frac{d\lambda}{d\gamma_2} \gamma_2 \right) = 0
$$

implying that

$$
\frac{d\lambda}{d\gamma_1} = \frac{\hat{\lambda} \omega e^{-\lambda_1}}{1 - \omega \gamma_1 e^{-\lambda_1} - (1 - \omega) \gamma_2 e^{-\lambda_2}}
$$

(19)

If $\hat{\lambda} = \omega$, then

$$
\frac{d\lambda}{d\gamma_1} = \frac{i \omega (\cos(v\gamma_1) - i \sin(v\gamma_1))}{1 - \omega \gamma_1 \cos(v\gamma_1) - (1 - \omega) \gamma_2 \cos(v\gamma_2) + i \omega \gamma_1 \sin(v\gamma_1) + (1 - \omega) \gamma_2 \sin(v\gamma_2)}.
$$

The sign of Re$[d\lambda/d\gamma_1]$ is the same as the sign of

$$
\sin(v\gamma_1) - (1 - \omega) \gamma_2 [\sin(v\gamma_1) \cos(v\gamma_2) - \cos(v\gamma_1) \sin(v\gamma_2)].
$$

By using equation (4), this can be rewritten as

$$
sign \left[\text{Re} \left(\frac{d\lambda}{d\gamma_1} \right) \right] = sign \left[\text{Re} \left[\sin(v\gamma_1) + \gamma_2 \cos(v\gamma_1) \{ \omega \sin(v\gamma_1) + (1 - \omega) \sin(v\gamma_2) \} \right] \right]
$$
where the braced expression equals \(v \) by equation (5). Hence
\[
\text{Re} \left(\frac{d\lambda}{d\gamma_1} \right) \geq 0 \text{ if and only if } \sin(v\gamma_1) + v\gamma_2 \cos(v\gamma_1) \geq 0
\]

Consider first the case of crossing any segment \(L_1(k,n) \) from the left. Here \(v\gamma_1 \in (0, \pi/2] \), so both \(\sin(v\gamma_1) \) and \(\cos(v\gamma_2) \) are positive. Hence stability is lost everywhere on any segment of \(L_1(k,n) \). Consider the case when crossing the segments of \(L_2(k,n) \) from the left. Here \(v\gamma_1 \in [\pi/2, \pi] \), so \(\cos(v\gamma_1) < 0 \). Combining (16) and the conditions for the sign of \(\text{Re}[d\lambda/d\gamma_1] \), we have that
\[
\text{Re} \left(\frac{d\lambda}{d\gamma_1} \right) \geq 0 \text{ if and only if } \frac{\partial\gamma_2}{\partial v} \leq 0.
\]
That is, stability is lost when \(\gamma_2 \) increases in \(v \) and stability is gained when \(\gamma_2 \) decreases in \(v \).

For each \(\gamma_2 > 0 \), define
\[
m(\gamma_2) = \min_{\gamma_1} \{ (\gamma_1, \gamma_2) \in L_1(k,n) \cup L_2(k,n), \ k, n \geq 0 \} \quad (20)
\]
Then the stability region is given as
\[
\{ (\gamma_1, \gamma_2) \mid \gamma_2 > 0, \ \gamma_1 < m(\gamma_2) \}.
\]
At \(\gamma_1 = 0 \) the system is asymptotically stable with all \(\gamma_2 > 0 \). With fixed value of \(\gamma_2 \) by increasing the value of \(\gamma_1 \) the first intercept with \(m(\gamma_2) \) should be a stability loss, since there is no stability switch before. Notice that this is the same result which was obtained earlier by Hale and Huang (1993) by using different approach.

3 The Symmetric Case

Assume next that \(\omega = 1/2 \). Then equations (4) and (5) imply that
\[
\cos(v\gamma_1) + \cos(v\gamma_2) = 0
\]
\[
v - \frac{1}{2} (\sin(v\gamma_1) + \sin(v\gamma_2)) = 0
\]
and the curves \(L_1(k,n) \) and \(L_2(k,n) \) are simplified as follows:
\[
L_1(k,n) : \begin{cases}
\gamma_1 = \frac{1}{v} (\sin^{-1}(v) + 2k\pi) \\
\gamma_2 = \frac{1}{v} (\pi - \sin^{-1}(v) + 2n\pi)
\end{cases}
\]
\[
\quad (22)
\]
and
\[
L_2(k,n) : \begin{cases}
\gamma_1 = \frac{1}{v} (\pi - \sin^{-1}(v) + 2k\pi) \\
\gamma_2 = \frac{1}{v} (\sin^{-1}(v) + 2n\pi)
\end{cases}
\]
\[
\quad (23)
\]
which are shown in Figure 3. The same argument as shown above for the nonsymmetric case can be applied here as well to show that stability region is given by (20) and (21), where the shape of the stability region differs from that of the nonsymmetric case. It is illustrated in Figure 3 by the shaded domain.

Notice that at each segment of \(\ell_2(k, n) \) there are at most two intercepts with the \(\nu \gamma_2 = -\tan(\nu \gamma_1) \) curve, so the same holds for \(L_2(k, n) \). At every other point \(\text{Re}[d\lambda/d\gamma_1] \neq 0 \), so at these points Hopf bifurcation occurs giving the possibility of the birth of limit cycles.

4 Conclusions

Ordinary differential equation were examined with two delays. After finding the possible stability switches, their curves were determined. Hopf bifurcation was used to find segments with stability losses and stability gains. The boundary of the stability region are the \(\gamma_2 = 0, \gamma_1 = 0 \) and the \(\gamma_1 = m(\gamma_2) \) curves. All other points on the curves \(L_1(k, n) \) and \(L_2(k, n) \) for \(k \geq 1 \) do not lead to actual stability switches, since the system is already unstable.
References

